弓-determinants of Laplacians with Neumann and Dirichlet boundary conditions

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 J. Phys. A: Math. Gen. 388967
(http://iopscience.iop.org/0305-4470/38/41/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.94
The article was downloaded on 03/06/2010 at 04:00

Please note that terms and conditions apply.

ζ-determinants of Laplacians with Neumann and Dirichlet boundary conditions

Paul Loya ${ }^{1}$ and Jinsung Park ${ }^{2}$
${ }^{1}$ Department of Mathematics, Binghamton University, Vestal Parkway East, Binghamton, NY 13902, USA
${ }^{2}$ School of Mathematics, Korea Institute for Advanced Study, 207-43, Cheongnyangni 2-dong, Dongdaemun-gu, Seoul 130-722, Korea
E-mail: paul@math.binghamton.edu and jinsung@kias.re.kr

Received 10 March 2005, in final form 15 July 2005
Published 28 September 2005
Online at stacks.iop.org/JPhysA/38/8967

Abstract

In this paper, we derive a formula for the ratio of the ζ-determinants of the Laplacian with Neumann and Dirichlet boundary conditions over a noncompact manifold with an infinite cylindrical end and a compact boundary in terms of the ζ-determinant of the Dirichlet to Neumann map.

PACS numbers: 02.30.Lt, 02.30.Gp, 02.30.Tb

1. Introduction

The powerful technique of ζ-regularized determinants entered mathematics in the seminal paper of Ray and Singer [25], and subsequently entered the physics world in quantum field theory, which uses ζ-regularization to renormalize divergent quantities such as vacuum energies and effective actions. In fact, at the one-loop order, any such QFT can be reduced to the theory of determinants. We refer the reader to the works of Dowker and Critchley [5], Hawking [10], Elizalde et al [6] and Kirsten [11] for recent reviews. Because of their increasingly important role in mathematics and physics, over the past several years there has been intense research to study functional ζ-determinants of Laplace type operators over a variety of compact and noncompact spacetime configurations. Of great practical significance is the Laplacian with Dirichlet and Neumann boundary conditions. The purpose of this paper is to study the ratio of the ζ-regularized determinants of the Laplacian with Dirichlet and Neumann boundary conditions over a noncompact spacetime configuration given by a manifold with cylindrical end and compact boundary.

We now describe our situation more precisely. Let X be a Riemannian manifold, of arbitrary positive dimension, with cylindrical end and compact boundary Y, that is,

$$
X=((-\infty, 0] \times Z) \cup M,
$$

Figure 1. X is a noncompact manifold that has both a cylindrical end and a compact boundary.
where M is a compact manifold with two compact boundary components of codimension one, Z and Y, and where we assume that M has a tubular neighbourhood $[-1,0]_{u} \times Y$ of Y. See figure 1 for an example of a two-dimensional manifold with cylindrical end and compact boundary. Thus, X is just a certain type of noncompact manifold with compact boundary. Let Δ be a Laplace-type operator acting on $C^{\infty}(X, E)$ with E a Hermitian vector bundle over X, where Laplace-type means that the principal symbol of Δ is the Riemannian metric and Δ is nonnegative on smooth sections compactly supported on the interior of X. We assume that Δ is of product-type over the cylindrical end $(-\infty, 0] \times Z$ and over the tubular neighbourhood $[-1,0]_{u} \times Y$:

$$
\begin{equation*}
\Delta=-\partial_{u}^{2}+\Delta_{Z} \quad \text { over } \quad(-\infty, 0]_{u} \times Z \tag{1.1}
\end{equation*}
$$

where Δ_{Z} is a Laplace-type over the compact boundaryless manifold Z, and

$$
\begin{equation*}
\Delta=-\partial_{u}^{2}+\Delta_{Y} \quad \text { over } \quad[-1,0]_{u} \times Y \tag{1.2}
\end{equation*}
$$

where Δ_{Y} is a Laplace-type over the compact boundaryless manifold Y.
Since X has a boundary, we need to impose a boundary condition for Δ. In this paper, we consider the two most common boundary conditions, the Neumann and Dirichlet conditions:

$$
\Delta_{N}:=\Delta: \operatorname{dom}\left(\Delta_{N}\right) \longrightarrow L^{2}(X, E)
$$

where

$$
\operatorname{dom}\left(\Delta_{N}\right):=\left\{\phi \in H^{2}(X, E)\left|\left(\partial_{u} \phi\right)\right|_{Y}=0\right\}
$$

and similarly, we define the Dirichlet Laplacian Δ_{D} with domain

$$
\operatorname{dom}\left(\Delta_{D}\right):=\left\{\phi \in H^{2}(X, E)|\phi|_{Y}=0\right\} .
$$

We assume that the Neumann and Dirichlet Laplacians Δ_{N} and Δ_{D} are nonnegative in the sense that

$$
\begin{equation*}
(L \phi, \phi) \geqslant 0 \quad \text { for all } \phi \in \operatorname{dom}(L) \quad \text { with } \quad L=\Delta_{N}, \Delta_{D} \tag{1.3}
\end{equation*}
$$

where (,) denotes the L^{2}-inner product, and that the Dirichlet problem is uniquely solvable in the following sense: for each $\varphi \in C^{\infty}\left(Y,\left.E\right|_{Y}\right)$ there is a unique bounded solution $\phi \in C^{\infty}(X, E)$ such that $\Delta \phi=0$ and $\left.\phi\right|_{Y}=\varphi$. The uniqueness of bounded solutions implies $\operatorname{ker} \Delta_{D}=\{0\}$. For example, the product-type conditions (1.1) and (1.2) and the nonnegativity condition (1.3) are both satisfied by the scalar Laplacian operator corresponding to a Riemannian metric on X that is of product-type over the cylindrical end and the tubular neighbourhood of Y.

To orient the reader to the various ' b-'regularizations used throughout this paper, assume just for the moment that $Z=\varnothing$ so that the cylindrical end of X is actually fictitious and X is a compact manifold with boundary. Then focusing on Neumann Laplacian Δ_{N}, the functional determinant of Δ_{N} is by definition

$$
\begin{align*}
& \operatorname{det}_{\zeta} \Delta_{N}:=\exp \left(-\left.\frac{\mathrm{d}}{\mathrm{~d} s}\right|_{s=0} \zeta\left(s, \Delta_{N}\right)\right) \tag{1.4}\\
& \zeta\left(s, \Delta_{N}\right):=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} \operatorname{Tr}\left(\Pi_{0}^{\perp} \mathrm{e}^{-t \Delta_{N}}\right) \mathrm{d} t
\end{align*}
$$

where Π_{0}^{\perp} is the orthogonal projection off the zero modes of Δ_{N} and $\mathrm{e}^{-t \Delta_{N}}$ is the heat operator of Δ_{N}. This definition of the ζ-determinant was introduced in Ray and Singer's paper [25] and is valid whether or not Δ_{N} has zero modes; in the case when Δ_{N} has zero modes, some authors denote the above determinant with a prime: $\operatorname{det}_{\zeta}^{\prime} \Delta_{N}$. In order to generalize this to the noncompact case, we shall present an alternative, but equivalent, definition of the zeta function $\zeta\left(s, \Delta_{N}\right)$. Consider the integrals
$I_{1}(s):=\frac{1}{\Gamma(s)} \int_{0}^{1} t^{s-1} \operatorname{Tr}\left(\mathrm{e}^{-t \Delta_{N}}\right) \mathrm{d} t, \quad I_{2}(s):=\frac{1}{\Gamma(s)} \int_{1}^{\infty} t^{s-1} \operatorname{Tr}\left(\mathrm{e}^{-t \Delta_{N}}\right) \mathrm{d} t$.
It is well known that the trace of the heat operator satisfies (cf $[6,11])$

$$
\begin{equation*}
\operatorname{Tr}\left(\mathrm{e}^{-t \Delta_{N}}\right) \sim \sum_{k=0}^{\infty} a_{k} t^{(k-n) / 2} \quad \text { as } \quad t \rightarrow 0 \tag{1.6}
\end{equation*}
$$

where $n=\operatorname{dim} X$, and

$$
\begin{equation*}
\operatorname{Tr}\left(\mathrm{e}^{-t \Delta_{N}}\right) \sim b_{0} \quad \text { as } \quad t \rightarrow \infty \tag{1.7}
\end{equation*}
$$

where $b_{0}=\operatorname{dim} \operatorname{ker} \Delta_{N}$. The expansion (1.6) shows that the function $I_{1}(s)$ in (1.5) has a meromorphic extension to \mathbb{C}, and the expansion (1.7) shows that the function $I_{2}(s)$ in (1.5) has a meromorphic extension to \mathbb{C} (in fact, the zero of $\frac{1}{\Gamma(s)}$ at $s=0$ cancels the pole of the integral at $t=\infty$, so $I_{2}(s)$ is an entire function). Moreover, it is a straightforward exercise to prove that

$$
\begin{equation*}
\zeta\left(s, \Delta_{N}\right) \equiv I_{1}(s)+I_{2}(s) \tag{1.8}
\end{equation*}
$$

Splitting the zeta function in this way has certain advantages; for example, it allows us to separate the small- and long-time behaviour of the heat operator, which allows us via (1.6) and (1.7) to immediately get the meromorphic structures of $I_{1}(s)$ and $I_{2}(s)$ separately, and hence of $\zeta\left(s, \Delta_{N}\right)$. Another advantage is that the right-hand side of (1.8) bypasses the explicit use of the orthogonal projection Π_{0}^{+}off the zero modes of Δ_{N} in (1.4). (Of course, the zero modes are still present in $I_{1}(s)$ and $I_{2}(s)$ but these cancel out when taking the sum $I_{1}(s)+I_{2}(s)$.)

Back to the general situation, since X is not compact in the case when $Z \neq \varnothing$ (which we are mostly interested in), as explained in section 2 the heat operators $\mathrm{e}^{-t \Delta_{N}}$ and $\mathrm{e}^{-t \Delta_{D}}$ are not of trace class essentially because the traces diverge over the infinite cylindrical end. To define their corresponding ζ-functions, it is therefore necessary to introduce an appropriate regularization of the trace. Two natural regularizations of the trace include the relative trace used by, for instance, Bruneau [3], Carron [4] and Müller [23], and the b-trace introduced by Melrose [22], both of which 'remove' in slightly different ways the divergent parts of the heat traces. We shall use Melrose's b-trace, denoted by ${ }^{b} \mathrm{Tr}$, throughout this paper, an introduction of which is given in section 2. In particular, focusing on the Neumann Laplacian for the moment, ${ }^{b} \operatorname{Tr}\left(\mathrm{e}^{-t \Delta_{N}}\right)$ is well defined and moreover, following the motivating example in (1.8) we can define the corresponding ${ }_{\zeta}{ }_{\zeta}$-function ${ }^{b_{\zeta}}\left(s, \Delta_{N}\right)$ as the sum of the meromorphic extensions of the functions

$$
\begin{equation*}
\frac{1}{\Gamma(s)} \int_{0}^{1} t^{s-1 b} \operatorname{Tr}\left(\mathrm{e}^{-t \Delta_{N}}\right) \mathrm{d} t \tag{1.9}
\end{equation*}
$$

defined a priori for $\Re s \gg 0$, and

$$
\begin{equation*}
\frac{1}{\Gamma(s)} \int_{1}^{\infty} t^{s-1 b} \operatorname{Tr}\left(\mathrm{e}^{-t \Delta_{N}}\right) \mathrm{d} t \tag{1.10}
\end{equation*}
$$

defined a priori for $\mathfrak{\Re} s \ll 0$; then, see section $2, b_{\zeta}\left(s, \Delta_{N}\right)$ is regular at $s=0$. The ${ }^{b_{\zeta}}$-determinant of Δ_{N} is defined, just as in the motivating example (1.4), as

$$
\operatorname{det}_{b_{\zeta}} \Delta_{N}:=\exp \left(-\left.\frac{\mathrm{d}}{\mathrm{~d} s}\right|_{s=0} ^{b_{\zeta}}\left(s, \Delta_{N}\right)\right)
$$

Similarly, one can define the ${ }^{b} \zeta$-determinant $\operatorname{det}_{b_{\zeta}} \Delta_{D}$. The relative invariant problem, in this context is to find a formula for the ratio

$$
\begin{equation*}
\frac{\operatorname{det}_{b_{\zeta}} \Delta_{N}}{\operatorname{det}_{b_{\zeta}} \Delta_{D}}=? \tag{1.11}
\end{equation*}
$$

in terms of recognizable data. In our problem, these data involve the Dirichlet to Neumann operator! This is the operator \mathcal{N} over Y defined by

$$
\mathcal{N} \varphi:=\left.\left(\partial_{u} \phi\right)\right|_{Y} \quad \text { for } \quad \varphi \in C^{\infty}\left(Y,\left.E\right|_{Y}\right)
$$

where ϕ is the bounded solution of the Dirichlet problem, $\Delta \phi=0,\left.\phi\right|_{Y}=\varphi$. (This operator is a specific case of the Agranovich-Dynin operator [1] for complementary elliptic boundary conditions.) It is easy to check that \mathcal{N} is a pseudodifferential operator of order 1 , which may have negative eigenvalues (see Park and Wojciechowski [24]) but is always bounded from below, and in the case that Δ is the scalar Laplacian, \mathcal{N} is nonnegative. Hence, we can define its ζ-regularized determinant, $\operatorname{det}_{\zeta} \mathcal{N}$. We remark that besides its appearance in our main theorem, the Dirichlet to Neumann map is perhaps most well known in the study of inverse problems; see Uhlmann [29] for a recent review and his joint work [12] for a recent development. We also remark that there are other relative invariant problems of great interest in addition to (1.11), especially dealing with Dirac operators; see Scott [26], Scott and Wojciechowski [27] and Loya and Park [18].

To state our main result, we need two more maps, L and \tilde{L} over Y, dealing with the L^{2} and the bounded solutions, respectively, of Δ_{N}. Let $\left\{u_{j}\right\}$ be an orthonormal basis for the kernel of Δ_{N} on $L^{2}(X, E)$ and let $\left\{U_{j}\right\}$ be a basis of the bounded solutions $\Delta_{N} U_{j}=0$ such that at $\{-\infty\} \times Z$ on the cylinder, $\left\{U_{j}(-\infty)\right\}$ are orthonormal in $L^{2}\left(Z,\left.E\right|_{Z}\right)$. Here, $U_{j}(-\infty):=\lim _{u \rightarrow-\infty} U_{j}(u, z)$ is well defined: solving the equation $\Delta_{N} U_{j}=0$ where $\Delta_{N}=-\partial_{u}^{2}+\Delta_{Z}$ over $(-\infty, 0]_{u} \times Z$ (see (1.1)) and using that U_{j} is bounded, it follows that U_{j} has the following expression over $(-\infty, 0]_{u} \times Z$,

$$
\left.U_{j}\right|_{(-\infty, 0]_{u} \times Z}=\sum_{\lambda_{k} \geqslant 0} a_{j k} \mathrm{e}^{\lambda_{k} u} \phi_{k},
$$

where $\left\{\left(\phi_{k}, \lambda_{k}^{2}\right)\right\}$ denotes the spectral resolution of the Laplacian Δ_{Z}. Hence,

$$
U_{j}(-\infty):=\lim _{u \rightarrow-\infty} U_{j}(u, z)=\sum_{\lambda_{k}=0} a_{j k} \phi_{k} \in L^{2}\left(Z,\left.E\right|_{z}\right)
$$

Elliptic theory on manifolds with cylindrical ends shows that the sets $\left\{u_{j}\right\}$ and $\left\{U_{j}\right\}$ are finite [22 chapter 5]. Let $v_{j}:=\left.u_{j}\right|_{Y}$ and $V_{j}:=\left.U_{j}\right|_{Y}$ be the restrictions of u_{j} and U_{j}, respectively, to the boundary $\{0\} \times Y$. In [15] it is shown that

$$
L:=\sum_{j} v_{j} \otimes v_{j}^{*}, \quad \widetilde{L}:=\sum_{j} V_{j} \otimes V_{j}^{*}
$$

where $v_{j}^{*}=\left(\cdot, v_{j}\right)_{Y}$ and $V_{j}^{*}=\left(\cdot, V_{j}\right)_{Y}$ with $(\cdot, \cdot)_{Y}$ denoting the L^{2} inner product over Y are nonnegative linear operators on $V=\operatorname{span}\left\{v_{j}, V_{j}\right\} \subset L^{2}\left(Y,\left.E\right|_{Y}\right)$. Since the set $\left\{v_{j}, V_{j}\right\}$ is a linearly independent set spanning V, the operator

$$
L+\widetilde{L}: V \longrightarrow V
$$

is positive. In particular, $\operatorname{det}(L+\widetilde{L})$ is nonzero. Our main result is
Theorem 1.1. The following relative formula holds:

$$
\begin{equation*}
\frac{\operatorname{det}_{\zeta} \Delta_{N}}{\operatorname{det}_{\zeta} \Delta_{D}}=\frac{\operatorname{det}_{\zeta} \mathcal{N}}{\operatorname{det}(L+\widetilde{L})} \tag{1.12}
\end{equation*}
$$

As mentioned in the lines above formula (1.9), in order to define the b-traces of $\mathrm{e}^{-t \Delta_{N}}$ and $\mathrm{e}^{-t \Delta_{D}}$, we remove their components that give rise to divergent traces, but it turns out that these components are the same for $\mathrm{e}^{-t \Delta_{N}}, \mathrm{e}^{-t \Delta_{D}}$ (see remark 2.1 in section 2). Hence the left-hand side of (1.12) in fact does not depend on the regularization of b-trace. If Z, the cross section of the cylindrical end, is empty, then X is just a compact manifold with boundary Y. In this case, the \widetilde{L} term vanishes, so we get the following corollary for free.

Corollary 1.2. For a compact manifold with boundary, we have

$$
\begin{equation*}
\frac{\operatorname{det}_{\zeta} \Delta_{N}}{\operatorname{det}_{\zeta} \Delta_{D}}=\frac{\operatorname{det}_{\zeta} \mathcal{N}}{\operatorname{det} L} \tag{1.13}
\end{equation*}
$$

Remark 1.3. Under the condition that \mathcal{N} is positive, the equality (1.13) was proved by Park and Wojciechowski [24]-in this case there is no term det L. The proof in [24] is in principle similar to Forman's proof [7], but to overcome certain trace class issues, the method of comparison with the model problem was employed; this method has also been used in [15-17, 20].

The main body of this paper consists of the following three sections: In section 2, we review the b-trace and then the ${ }^{b} \zeta$-determinant along with its gluing formula for manifolds with an infinite cylindrical end and a compact boundary. In section 3, we compute the ζ-determinant of the Laplacian over a finite cylinder with the Dirichlet and Neumann boundary conditions over each boundary. In section 4 , we prove theorem 1.1 combining results presented in the previous sections.

2. Gluing formula of the ${ }^{\boldsymbol{b}} \boldsymbol{\zeta}$-determinant

We give an elementary introduction to Melrose's b-trace introduced in [22]. To see the necessity for a regularized trace, we begin by describing the heat operator $\mathrm{e}^{-t \Delta_{N}}$ on the cylindrical end $(-\infty, 0]_{u} \times Z$. Restricting the heat kernel to the diagonal, taking the fibrewise trace and looking at it on the cylinder, one can show that [22, chapter 8]
$\left.\operatorname{tr~}^{-t \Delta_{N}}\right|_{\text {Diag }}=\frac{1}{\sqrt{4 \pi t}} \operatorname{tr~}^{-t \Delta_{z}}(z, z)+H_{N}(t, u, z) \quad$ over $\quad(-\infty, 0]_{u} \times Z$,
where z is the Z variable, Δ_{Z} is a Laplace-type operator over Z, and for fixed $t>0$, $H_{N}(t, u, z)=\mathcal{O}\left(\mathrm{e}^{-|u|}\right)$ as $u \rightarrow-\infty$. Since $H_{N}(t, u, z)=\mathcal{O}\left(\mathrm{e}^{-|u|}\right)$, the integral of $H_{N}(t, u, z)$ exists over $(-\infty, 0]_{u} \times Z$. Unfortunately, the first term on the right-hand side of (2.1) is constant with respect to u, so is not integrable on the infinite cylinder. In particular, the trace given by the standard integral formula

$$
\begin{equation*}
\left.\int_{X} \operatorname{tr~}^{-t \Delta_{N}}\right|_{\text {Diag }} \tag{2.2}
\end{equation*}
$$

is not defined. However, Melrose [22] defined another notion of trace called the b-trace described as follows. Let ϕ be a locally integrable function on X and suppose that on the infinite cylinder $(-\infty, 0]_{u} \times Y$, we can write $\phi(u, z)=\varphi(z)+\psi(u, z)$ where $\varphi(z)$ is constant in u and $\psi(u, z)$ is integrable (cf (2.1)). Then the function $\varphi(z)$ is exactly the obstruction to ϕ being integrable on X. We define the b-integral of ϕ by throwing out this obstruction and keeping the integrable part:

$$
\int_{X} \phi:=\int_{M} \phi+\int_{(-\infty, 0]_{u} \times Z} \psi(u, z) \mathrm{d} u \mathrm{~d} z
$$

where $\mathrm{d} z$ is the measure on Z. From the decomposition (2.1), we see that

$$
{ }^{b} \operatorname{Tr~}^{-t \Delta_{N}}:=\left.\int_{X} \operatorname{tr~}^{-t \Delta_{N}}\right|_{\text {Diag }},
$$

is well defined; ${ }^{b} \operatorname{Tr} \mathrm{e}^{-t \Delta_{N}}$ is called the b-trace of $\mathrm{e}^{-t \Delta_{N}}$.
In a similar way, the Dirichlet heat kernel has the following form over the cylinder:
$\left.\operatorname{tr~}^{-t \Delta_{D}}\right|_{\text {Diag }}=\frac{1}{\sqrt{4 \pi t}} \operatorname{tr}^{-t \Delta_{Z}}(z, z)+H_{D}(t, u, z) \quad$ over $\quad(-\infty, 0]_{u} \times Z$,
where $H_{D}(t, u, z)=\mathcal{O}\left(\mathrm{e}^{-|u|}\right)$ as $u \rightarrow-\infty$. In particular, just as for the Neumann Laplacian, the b-trace of the Dirichlet Laplacian, ${ }^{b} \operatorname{Tr} \mathrm{e}^{-t \Delta_{D}}$, is also well defined.

Remark 2.1. Note that the term $\frac{1}{\sqrt{4 \pi t}} \operatorname{tr}^{-t \Delta_{z}}(z, z)$, which leads to a divergent trace integral as discussed around (2.2), is the same as for the Neumann case. This accounts for the fact that the left-hand side of equation (1.12) of theorem 1.1 is independent of the regularization of the b-trace.

By the work in Melrose [22], the b-trace of $\mathrm{e}^{-t \Delta_{N}}$ has the usual short-time asymptotic expansion:

$$
\begin{equation*}
{ }^{b} \operatorname{Tr}^{-t \Delta_{N}} \sim \sum_{k=0}^{\infty} a_{k} t^{(k-n) / 2} \quad \text { as } \quad t \rightarrow 0 \tag{2.4}
\end{equation*}
$$

where $n=\operatorname{dim} X$, and the long-time asymptotic expansion (see [8 Appendix]):

$$
\begin{equation*}
{ }^{b} \operatorname{Tr~}^{-t \Delta_{N}} \sim \sum_{k=0}^{\infty} b_{k} t^{-k / 2} \quad \text { as } \quad t \rightarrow \infty \tag{2.5}
\end{equation*}
$$

where $b_{0}=\operatorname{dim} \operatorname{ker} \Delta_{N}+\frac{p}{2}-\frac{1}{4} \operatorname{dim} \operatorname{ker} \Delta_{Z}$ with p being the dimension of the extended L^{2} kernel of Δ_{N}. The heat kernel for the Dirichlet Laplacian Δ_{D} has similar expansions, the main difference being that b_{0} in (2.5) is equal to $-\frac{1}{4} \operatorname{dim} \operatorname{ker} \Delta_{Z}$ in this case (because the Dirichlet problem is uniquely solvable). From (2.4) and (2.5) it follows that ${ }^{b} \zeta\left(s, \Delta_{N}\right)$ and ${ }^{b} \zeta\left(s, \Delta_{D}\right)$ (defined via (1.9) and (1.10)) are regular at $s=0$, so their corresponding ${ }^{b} \zeta$-determinants are well defined.

We now discuss the gluing formula of $\operatorname{det}_{b_{\zeta}} \Delta_{N}$ in our context. We consider a hypersurface H in X of the form $\{s\} \times Z$ or $\{r\} \times Y$ where $s \in(-\infty, 0), r \in(-1,0)$. We decompose X into two parts X_{+}and X_{-}along H, the right-hand and left-hand sides of H. For the restriction of Δ_{N} over X_{+}, X_{-}, we impose Dirichlet boundary conditions over H and denote by Δ_{+}, Δ_{-}the resulting operators. Note that Δ_{-}is defined over the noncompact manifold X_{-}with cylindrical end and one boundary component. Hence, as for Δ_{N}, we have to use the ${ }^{b} \zeta$-determinant for Δ_{-}rather than the ordinary ζ-determinant. Then the gluing problem in this context is to find a formula for the ratio

$$
\frac{\operatorname{det}_{b_{\zeta}} \Delta_{N}}{\operatorname{det}_{\zeta} \Delta_{+} \cdot \operatorname{det}_{b_{\zeta}} \Delta_{-}}=?
$$

in terms of recognizable data. To describe the right-hand side, we need to introduce some notations. First, we consider the Dirichlet to Neumann operators $\mathcal{N}_{ \pm}$for $\Delta_{ \pm}$; that is, we consider the solutions $\phi_{ \pm}$of the Dirichlet problems for $\Delta_{ \pm}$with the boundary data φ. Then the operators $\mathcal{N}_{ \pm}$are defined by $\mathcal{N}_{ \pm} \varphi=\left.\mp\left(\partial_{u} \phi_{ \pm}\right)\right|_{H}$. Now we define

$$
\mathcal{R} \varphi=\mathcal{N}_{-} \varphi+\mathcal{N}_{+} \varphi \quad \text { for } \quad \varphi \in C^{\infty}\left(H,\left.E\right|_{H}\right)
$$

Then the operator \mathcal{R} is a nonnegative pseudodifferential operator of order 1 over H (this can be proved as in [15 Appendix]). In particular, we can define its ζ-determinant, $\operatorname{det}_{\zeta} \mathcal{R}$. Second,
we recall that $\left\{u_{j}\right\}$ is an orthonormal basis for the kernel of Δ_{N} on $L^{2}(X, E)$ and $\left\{U_{j}\right\}$ is a basis of the bounded solutions $\Delta_{N} U_{j}=0$ such that at $\{-\infty\} \times Z$ on the cylinder, $\left\{U_{j}(-\infty)\right\}$ are orthonormal in $L^{2}\left(Z,\left.E\right|_{Z}\right)$. We put $v_{j}(H):=\left.u_{j}\right|_{H}$ and $V_{j}(H):=\left.U_{j}\right|_{H}$, the restrictions of u_{j} and U_{j}, respectively, to the cutting hypersurface H. As before, we define

$$
L(H):=\sum_{j} v_{j}(H) \otimes v_{j}(H)^{*}, \quad \widetilde{L}(H):=\sum_{j} V_{j}(H) \otimes V_{j}(H)^{*}
$$

which are nonnegative linear operators on $\operatorname{span}\left\{v_{j}(H), V_{j}(H)\right\} \subset L^{2}\left(H,\left.E\right|_{H}\right)$. Now we can state the gluing formula for $\operatorname{det}_{b_{\xi}} \Delta_{N}$:

Theorem 2.2. The following gluing formula holds:

$$
\frac{\operatorname{det}_{b_{\zeta}} \Delta_{N}}{\operatorname{det}_{\zeta} \Delta_{+} \cdot \operatorname{det}_{b_{\zeta}} \Delta_{-}}=2^{-\zeta_{\Delta_{H}}(0)-h_{H}} \cdot \frac{\operatorname{det}_{\zeta} \mathcal{R}}{\operatorname{det}(L(H)+\widetilde{L}(H))},
$$

where $\zeta_{\Delta_{H}}(s)$ is the ζ-function of $\Delta_{H}:=\left.\Delta\right|_{H}$ and $h_{H}:=\operatorname{dim} \operatorname{ker} \Delta_{H}$.
This theorem can be proved in essentially the same way as in [15], so we will not repeat its proof here. We remark that theorem 2.2 is a generalization of the result of Burghelea, Friedlander and Kappeler [2] for compact manifolds; cf also Levit and Smilansky [14], Carron [4], Hassell and Zelditch [9], Lee [13], Hassell [8] and Vishik [30] for related results dealing with the analytic torsion. We also refer to Mazzeo and Piazza [21] for an overview of gluing problems. Finally, we remark that there are gluing formulae similar to that in theorem 2.2 in other contexts, see $[16,17,19,20]$ for some recent developments.

3. ζ-determinants over finite cylinders

Let $Y_{r}:=[-r, 0]_{u} \times Y$ and over Y_{r} consider the Laplace type operator

$$
-\partial_{u}^{2}+\Delta_{Y},
$$

where Δ_{Y} is the Laplace type operator over Y. We impose the Dirichlet (resp. Neumann) boundary condition at $\{-r\} \times Y$ (resp. $\{0\} \times Y$) and denote by Δ_{r}^{c} the resulting operator. First, we have

Proposition 3.1. The following equality holds:

$$
\begin{equation*}
\operatorname{det}_{\zeta} \Delta_{r}^{c}=2^{h_{Y}} \cdot \exp (C r) \cdot \operatorname{det}_{F}^{*}\left(\operatorname{Id}+\mathrm{e}^{-2 r \sqrt{\Delta_{Y}}}\right) \tag{3.1}
\end{equation*}
$$

where $h_{Y}=\operatorname{dim} \operatorname{ker}\left(\Delta_{Y}\right), C=-\left.(2 \sqrt{\pi})^{-1} \frac{\mathrm{~d}}{\mathrm{~d} s}\right|_{s=0}\left(\Gamma(s)^{-1} \Gamma(s-1 / 2) \zeta_{\Delta_{Y}}(s-1 / 2)\right)$ and $\operatorname{det}_{F}^{*}$ denotes the Fredholm determinant over $\operatorname{ker}\left(\Delta_{Y}\right)^{\perp}$.
Proof. Let us denote the spectrum of Δ_{Y} by $\left\{\mu_{l}: l \in \mathbb{N}\right\}$. Then we have

$$
\operatorname{spec}\left(\Delta_{r}^{c}\right)=\left\{\left.\mu_{l}+\frac{\pi^{2}(k+1 / 2)^{2}}{r^{2}} \right\rvert\, l, k \in \mathbb{N}\right\} .
$$

This implies that

$$
\begin{equation*}
\zeta_{\Delta_{r}^{c}}(s)=\sum_{l=h_{Y}+1}^{\infty} \sum_{k=1}^{\infty}\left(\mu_{l}+\frac{\pi^{2}(k+1 / 2)^{2}}{r^{2}}\right)^{-s}+h_{Y}(r / \pi)^{2 s} \zeta(2 s, 1 / 2), \tag{3.2}
\end{equation*}
$$

where $\zeta(s, a)$ is the Hurwitz zeta function defined by (see [31])

$$
\zeta(s, a)=\sum_{k=0}^{\infty}(k+a)^{-s} \quad \text { for } \quad 0<a<1
$$

with the properties $\zeta(0, a)=\frac{1}{2}-a$ and $\left.\frac{\mathrm{d}}{\mathrm{d} s}\right|_{s=0} \zeta(s, a)=\log (\Gamma(a))-\frac{1}{2} \log (2 \pi)$. We can rewrite the first term on the right-hand side of (3.2) as

$$
\begin{equation*}
\frac{1}{2} \frac{1}{\Gamma(s)} \sum_{l=h_{Y}+1}^{\infty} \mu_{l}^{-s} \int_{0}^{\infty} \sum_{k \in \mathbb{Z}} \exp \left(-\left(1+\left(\frac{\pi(k+1 / 2)}{r \sqrt{\mu_{l}}}\right)^{2}\right) x\right) x^{s-1} \mathrm{~d} x . \tag{3.3}
\end{equation*}
$$

Recalling the Poisson summation formula

$$
\sum_{k \in \mathbb{Z}} \mathrm{e}^{-a^{2}(k+b)^{2}}=\sum_{k \in \mathbb{Z}} \frac{\sqrt{\pi}}{a} \mathrm{e}^{-\frac{\pi^{2} k^{2}}{a^{2}}} \cdot \mathrm{e}^{2 \pi \mathrm{i} k b},
$$

where a, b are positive real numbers; we see that (3.3) is same as

$$
\begin{aligned}
& \frac{1}{2} \frac{1}{\Gamma(s)} \sum_{l=h_{Y}+1}^{\infty} \mu_{l}^{-s} \int_{0}^{\infty}\left(\sum_{k \in \mathbb{Z}} \frac{r \sqrt{\mu_{l}}}{\sqrt{\pi x}} \exp \left(-\frac{\left(r \sqrt{\mu_{l}} k\right)^{2}}{x}+\pi \mathrm{i} k\right) \mathrm{e}^{-x}\right) x^{s-1} \mathrm{~d} x \\
& =\frac{r}{\sqrt{\pi}} \frac{1}{\Gamma(s)} \sum_{l=h_{Y}+1}^{\infty} \mu_{l}^{-s+1 / 2} \int_{0}^{\infty}\left(\sum_{k \in \mathbb{N}} \exp \left(-\frac{\left(r \sqrt{\mu_{l}} k\right)^{2}}{x}+\pi \mathrm{i} k\right) \mathrm{e}^{-x}\right) x^{s-3 / 2} \mathrm{~d} x \\
& \quad+\frac{1}{2} \frac{r}{\sqrt{\pi}} \frac{1}{\Gamma(s)} \sum_{l=h_{Y}+1}^{\infty} \mu_{l}^{-s+1 / 2} \Gamma(s-1 / 2)
\end{aligned}
$$

Now observe that the function

$$
\int_{0}^{\infty}\left(\sum_{k \in \mathbb{N}} \exp \left(-\frac{\left(r \sqrt{\mu_{l}} k\right)^{2}}{x}+\pi \mathrm{i} k\right) \mathrm{e}^{-x}\right) x^{s-3 / 2} \mathrm{~d} x
$$

is regular at $s=0$ and that

$$
\frac{1}{2} \frac{r}{\sqrt{\pi}} \frac{1}{\Gamma(s)} \sum_{l=h_{Y}+1}^{\infty} \mu_{l}^{-s+1 / 2} \Gamma(s-1 / 2)=\frac{1}{2} \frac{r}{\sqrt{\pi}} \frac{\Gamma(s-1 / 2)}{\Gamma(s)} \zeta_{\Delta_{Y}}(s-1 / 2) .
$$

Therefore, taking the derivative of $\zeta_{\Delta_{r}^{c}}(s)$ at $s=0$ in (3.2) and using the equality $\left.\frac{d}{d s}\right|_{s=0}(1 / \Gamma(s))=1$, we obtain

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} s}\right|_{s=0} \zeta_{\Delta_{r}^{c}}(s)= & \frac{r}{\sqrt{\pi}} \sum_{l=h_{Y}+1}^{\infty} \sqrt{\mu_{l}} \int_{0}^{\infty}\left(\sum_{k \in \mathbb{N}} \exp \left(-\frac{\left(r \sqrt{\mu_{l}} k\right)^{2}}{x}+\pi \mathrm{i} k\right) \mathrm{e}^{-x}\right) x^{-3 / 2} \mathrm{~d} x \\
& +\left.\frac{r}{2 \sqrt{\pi}} \frac{\mathrm{~d}}{\mathrm{~d} s}\right|_{s=0}\left(\Gamma(s)^{-1} \Gamma(s-1 / 2) \zeta_{\Delta_{Y}}(s-1 / 2)\right) \\
& +h_{Y}\left(2 \log (r / \pi) \zeta(0,1 / 2)+\left.2 \frac{\mathrm{~d}}{\mathrm{~d} s}\right|_{s=0} \zeta(s, 1 / 2)\right)
\end{aligned}
$$

Simplifying this expression, we obtain

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} s}\right|_{s=0} \zeta_{\Delta_{r}^{c}}(s)= & \sum_{l=h_{Y}+1}^{\infty} \sum_{k \in \mathbb{N}} \frac{\mathrm{e}^{-2 r \sqrt{\mu_{l}} k}}{k} \cdot \mathrm{e}^{\pi i k} \\
& +\left.\frac{r}{2 \sqrt{\pi}} \frac{\mathrm{~d}}{\mathrm{~d} s}\right|_{s=0}\left(\Gamma(s)^{-1} \Gamma(s-1 / 2) \zeta_{\Delta_{Y}}(s-1 / 2)\right)-h_{Y} \log 2 .
\end{aligned}
$$

This equality immediately implies (3.1).
Let \mathcal{N}_{r} denote the Dirichlet to Neumann operator for the operator

$$
\Delta_{r, N}^{c}:=-\partial_{u}^{2}+\Delta_{Y}: \operatorname{dom}\left(\Delta_{r, N}^{c}\right) \longrightarrow L^{2}\left(Y_{r}, E\right)
$$

Figure 2. Cutting X at r into X_{r} and $Y_{r}=[-r, 0] \times Y$.
where

$$
\operatorname{dom}\left(\Delta_{r, N}^{c}\right):=\left\{\phi \in H^{2}\left(Y_{r}, E\right)\left|\left(\partial_{u} \phi\right)\right|_{\{0\} \times Y}=0\right\} .
$$

Now we have
Proposition 3.2. The following equality holds:

$$
\mathcal{N}_{r}=\sqrt{\Delta_{Y}} \frac{\mathrm{Id}-\mathrm{e}^{-2 r \sqrt{\Delta_{Y}}}}{\mathrm{Id}+\mathrm{e}^{-2 r \sqrt{\Delta_{Y}}}} .
$$

Proof. Since $\Delta_{r, N}^{c}$ is of product form, it is enough to know the map \mathcal{N}_{r} on eigensections of Δ_{Y}. Let φ_{l} be an eigensection of Δ_{Y} corresponding to the eigenvalue μ_{l}. Let us first consider the case of nonzero μ_{l}. Then the solution ϕ_{l} of the Dirichlet problem for $\Delta_{r, N}^{c}$ with $\left.\phi_{l}\right|_{\{-r\} \times Y}=\varphi_{l}$ is given by

$$
\phi_{l}=\frac{\mathrm{e}^{(u+r) \sqrt{\mu_{l}}}+\mathrm{e}^{(-u+r) \sqrt{\mu_{l}}}}{1+\mathrm{e}^{2 r} \sqrt{\mu_{l}}} \varphi_{l} .
$$

Hence,

$$
\mathcal{N}_{r} \varphi_{l}:=-\left.\partial_{u}\right|_{u=-r} \phi_{l}=-\sqrt{\mu_{l}} \frac{1-\mathrm{e}^{2 r \sqrt{\mu_{l}}}}{1+\mathrm{e}^{2 r \sqrt{\mu_{l}}}} \varphi_{l}=\sqrt{\mu_{l}} \frac{1-\mathrm{e}^{-2 r \sqrt{\mu_{l}}}}{1+\mathrm{e}^{-2 r \sqrt{\mu_{l}}}} \varphi_{l} .
$$

For $\mu_{l}=0$, it is easy to see that $\mathcal{N}_{r} \varphi_{l}=0$. These complete the proof.

4. Proof of theorem

Let us decompose X into X_{r} and $Y_{r}=[-r, 0] \times Y$ with $0<r<1$ as shown in figure 2. For the restrictions of Δ_{N} to X_{r} and Y_{r}, we impose Dirichlet boundary conditions over $\{-r\} \times Y$ and we denote by $\Delta_{X_{r}}, \Delta_{Y_{r}}$ the resulting operators. Then, by theorem 2.2, the following equality holds:

$$
\begin{equation*}
\frac{\operatorname{det}_{b_{\zeta}} \Delta_{N}}{\operatorname{det}_{b_{\zeta}} \Delta_{X_{r}} \cdot \operatorname{det}_{\zeta} \Delta_{Y_{r}}}=2^{-\zeta_{\Delta_{Y}}(0)-h_{Y}} \frac{\operatorname{det}_{\zeta} \mathcal{R}_{r}}{\operatorname{det}\left(L_{r}+\widetilde{L}_{r}\right)}, \tag{4.1}
\end{equation*}
$$

where L_{r}, \widetilde{L}_{r} are defined by restricting $\left\{u_{j}\right\},\left\{U_{j}\right\}$ to $\{-r\} \times Y$. Recall that the operator \mathcal{R}_{r} over $\{-r\} \times Y$ is defined by

$$
\mathcal{R}_{r}:=\mathcal{N}_{X_{r}}+\mathcal{N}_{Y_{r}},
$$

where $\mathcal{N}_{X_{r}}, \mathcal{N}_{Y_{r}}$ denote the Dirichlet to Neumann operators over X_{r}, Y_{r}, respectively. Rewriting (4.1) as

$$
\begin{equation*}
\frac{\operatorname{det}_{b_{\zeta}} \Delta_{N}}{\operatorname{det}_{b_{\zeta}} \Delta_{X_{r}}}=2^{-\zeta_{\Delta_{Y}}(0)-h_{Y}} \cdot \operatorname{det}_{\zeta} \Delta_{Y_{r}} \cdot \frac{\operatorname{det}_{\zeta} \mathcal{R}_{r}}{\operatorname{det}\left(L_{r}+\widetilde{L}_{r}\right)}, \tag{4.2}
\end{equation*}
$$

let us consider the limit of both sides as $r \rightarrow 0$. First, we note that $\Delta_{X_{r}}$ and Δ_{D} have no kernels by our assumption, hence it follows that

$$
\begin{equation*}
\lim _{r \rightarrow 0} \operatorname{det}_{\zeta} \Delta_{X_{r}}=\operatorname{det}_{\zeta} \Delta_{D} \tag{4.3}
\end{equation*}
$$

Second, by proposition 3.1 we have

$$
\operatorname{det}_{\zeta} \Delta_{Y_{r}}=2^{h_{Y}} \cdot \exp (C r) \cdot \operatorname{det}_{F}^{*}\left(\operatorname{Id}+\mathrm{e}^{-2 r \sqrt{\Delta_{Y}}}\right),
$$

where $C=-\left.(2 \sqrt{\pi})^{-1} \frac{\mathrm{~d}}{\mathrm{~d} s}\right|_{s=0}\left(\Gamma(s)^{-1} \Gamma(s-1 / 2) \zeta_{\Delta_{Y}}(s-1 / 2)\right)$ and $\operatorname{det}_{F}^{*}$ denotes the Fredholm determinant over $\operatorname{ker}\left(\Delta_{Y}\right)^{\perp}$. Now let us consider the following equalities:

$$
\begin{aligned}
\lim _{r \rightarrow 0} \operatorname{det}_{F}^{*}\left(\operatorname{Id}+\mathrm{e}^{-2 r \sqrt{\Delta_{Y}}}\right) \cdot \operatorname{det}_{\zeta} \Delta_{Y} & =\lim _{r \rightarrow 0} \operatorname{det}_{\zeta}\left(\left(\operatorname{Id}+\mathrm{e}^{-2 r \sqrt{\Delta_{Y}}}\right) \cdot \Delta_{Y}\right) \\
& =\operatorname{det}_{\zeta}\left(2 \Delta_{Y}\right)=2^{\zeta_{\Delta_{Y}}(0)} \cdot \operatorname{det}_{\zeta} \Delta_{Y} .
\end{aligned}
$$

Cancelling $\operatorname{det}_{\zeta} \Delta_{Y}$ from both sides, we see that $\lim _{r \rightarrow 0} \operatorname{det}_{F}^{*}\left(\operatorname{Id}+\mathrm{e}^{-2 r \sqrt{\Delta_{Y}}}\right)=2^{\zeta_{\Delta_{Y}}(0)}$. Therefore,

$$
\begin{equation*}
\lim _{r \rightarrow 0} \operatorname{det}_{\zeta} \Delta_{Y_{r}}=\lim _{r \rightarrow 0} 2^{h_{Y}} \cdot \exp (C r) \cdot \operatorname{det}_{F}^{*}\left(\operatorname{Id}+\mathrm{e}^{-2 r \sqrt{\Delta_{Y}}}\right)=2^{\zeta_{\Delta_{Y}}(0)+h_{Y}} . \tag{4.4}
\end{equation*}
$$

Third, by proposition 3.2, we have

$$
\mathcal{N}_{Y_{r}}=\sqrt{\Delta_{Y}} \frac{\mathrm{Id}-\mathrm{e}^{-2 r \sqrt{\Delta_{Y}}}}{\mathrm{Id}+\mathrm{e}^{-2 r \sqrt{\Delta_{Y}}}},
$$

which implies

$$
\begin{equation*}
\lim _{r \rightarrow 0} \mathcal{N}_{Y_{r}}=0 \quad \text { with respect to the operator norm. } \tag{4.5}
\end{equation*}
$$

Now let us observe that \mathcal{R}_{r} is continuous in r such that $\operatorname{ker} \mathcal{R}_{r}$ has constant rank as it is given by restricting the harmonic sections of Δ_{N} to $\{-r\} \times Y$. Moreover, defining $\mathcal{R}_{0}:=\mathcal{N}_{X_{0}}=\mathcal{N}$, we can see that \mathcal{R}_{r} is continuous even at $r=0$ by (4.5) with $\operatorname{ker} \mathcal{R}_{0} \cong \operatorname{ker} \mathcal{R}_{r}$ for small nonzero r. Hence, we can see that

$$
\begin{equation*}
\lim _{r \rightarrow 0} \operatorname{det}_{\zeta} \mathcal{R}_{r}=\lim _{r \rightarrow 0} \operatorname{det}_{\zeta}\left(\mathcal{N}_{X_{r}}+\mathcal{N}_{Y_{r}}\right)=\operatorname{det}_{\zeta}\left[\lim _{r \rightarrow 0}\left(\mathcal{N}_{X_{r}}+\mathcal{N}_{Y_{r}}\right)\right]=\operatorname{det}_{\zeta} \mathcal{N} . \tag{4.6}
\end{equation*}
$$

Trivially, as $r \rightarrow 0$,

$$
\begin{equation*}
\operatorname{det}\left(L_{r}+\widetilde{L}_{r}\right) \longrightarrow \operatorname{det}\left(L_{0}+\widetilde{L}_{0}\right)=: \operatorname{det}(L+\widetilde{L}) . \tag{4.7}
\end{equation*}
$$

Combining (4.3), (4.4), (4.6) and (4.7) into the identity (4.2), we conclude that

$$
\frac{\operatorname{det}_{b_{\zeta}} \Delta_{N}}{\operatorname{det}_{b_{\zeta}} \Delta_{D}}=\frac{\operatorname{det}_{\zeta} \mathcal{N}}{\operatorname{det}(L+\widetilde{L})}
$$

This completes the proof of theorem 1.1.

Acknowledgments

The authors give their sincere thanks to the referees for corrections and helpful suggestions, all of which considerably improved this paper.

References

[1] Agranovich M S and Dynin A S 1962 General boundary value problems for elliptic systems in an n-dimensional domain Dokl. Akad. Nauk. SSR 146 511-4
[2] Burghelea D, Friedlander L and Kappeler T 1992 Mayer-Vietoris type formula for determinants of differential operators J. Funct. Anal. 107 34-65
[3] Bruneau V 1996 Fonctions zêta et êta en présence de spectre continu C. R. Acad. Sci. Paris Sér. I Math. 323 475-80
[4] Carron G 2002 Déterminant relatif et la fonction Xi Am. J. Math. 124 307-52
[5] Dowker J S and Critchley R 1976 Effective Lagrangian and energy-momentum tensor in de sitter space Phys. Rev. D 13 3224-32
[6] Elizalde E, Odintsov S D, Romeo A, Bytsenko A A and Zerbini S 1994 Zeta Regularization Techniques with Applications (River Edge, NJ: World Scientific)
[7] Forman R 1987 Functional determinants and geometry Invent. Math. 88 447-93
[8] Hassell A 1998 Analytic surgery and analytic torsion Commun. Anal. Geom. 6 255-89
[9] Hassell A and Zelditch S 1999 Determinants of Laplacians in exterior domains Int. Math. Res. Not. 18 971-1004
[10] Hawking S W 1977 Zeta function regularization of path integrals in curved spacetime Commun. Math. Phys. 55 133-48
[11] Kirsten K 2001 Spectral Functions in Mathematics and Physics (Boca Raton, FL: Chapman \& Hall/CRC Press)
[12] Lassas M, Taylor M and Uhlmann G 2003 The Dirichlet-to-Neumann map for complete Riemannian Manifolds with boundary Commun. Anal. Geom. 11 207-21
[13] Lee Y 2003 Burghelea-Friedlander-Kappeler's gluing formula for the zeta-determinant and its applications to the adiabatic decompositions of the zeta-determinant and the analytic torsion Trans. Am. Math. Soc. $\mathbf{3 5 5}$ 4093-110
[14] Levit S and Smilansky U 1977 A theorem on infinite products of eigenvalues of Sturm-Liouville type operators Proc. Am. Math. Soc. 65 299-302
[15] Loya P and Park J 2004 Decomposition of the ζ-determinant for the Laplacian on manifolds with cylindrical end Illinois J. Math. 48 1279-303
[16] Loya P and Park J 2005 On the gluing problem for the spectral invariants of Dirac operators Adv. Math. to appear
[17] Loya P and Park J 2005 On the gluing problem for Dirac operators on manifolds with cylindrical ends J. Geom. Anal. 15 285-319
[18] Loya P and Park J 2004 The comparison problem for the spectral invariants of Dirac type operators Preprint
[19] Loya P and Park J 2005 Eta invariants for first order regular singular operators Preprint
[20] Loya P, Mcdonald P and Park J 2005 Zeta regularized determinants for conic manifolds Preprint
[21] Mazzeo R and Piazza P 1998 Dirac operators, heat kernels and microlocal analysis: II. Analytic surgery Rend. Mat. Appl. (7) 18 221-88
[22] Melrose R B 1993 The Atiyah-Patodi-Singer Index Theorem (Wellesley, MA: A K Peters)
[23] Müller W 1998 Relative zeta functions, relative determinants and scattering theory Commun. Math. Phys. 192 309-47
[24] Park J and Wojciechowski K P 2005 Agranovich-Dynin formula for zeta-determinants of the Neumann and Dirichlet problems Contemp. Math. 366 109-21
[25] Ray D B and Singer I M 1971 R-torsion and the Laplacian on Riemannian manifolds Adv. Math. 7 145-210
[26] Scott S 2002 Zeta determinants on manifolds with boundary J. Funct. Anal. 192 112-85
[27] Scott S and Wojciechowski K P 1999 The ζ-determinant and Quillen determinant for a Dirac operator on a manifold with boundary Geom. Funct. Anal. 10 1202-36
[28] Seeley R T 1966 Singular integrals and boundary value problems Am. J. Math. 88 781-809
[29] Uhlmann G 1999 Developments in inverse problems since Calderón's foundational paper Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996) (Chicago Lectures in Math.) (Chicago, IL: University of Chicago Press) pp 295-345
[30] Vishik S M 1995 Generalized Ray-Singer conjecture: I. A manifold with a smooth boundary Commun. Math. Phys. 167 1-102
[31] Whittaker E T and Watson G N 1996 A Course of Modern Analysis (Reprint of the fourth (1927) edition) (Cambridge: Cambridge University Press)

